Compare commits

..

No commits in common. "d3c424d90aa5e2fe29f6b0306efada43bd1f3774" and "0292db36e2f3c8ba09290ec6c6121773d2c72686" have entirely different histories.

72
wsgi.py
View File

@ -11,10 +11,10 @@ import matplotlib.pyplot as plt
import matplotlib.ticker as mtick import matplotlib.ticker as mtick
import numpy as np import numpy as np
import pandas as pd import pandas as pd
from flask import Flask, Markup, abort, render_template, request from flask import Flask, Markup, render_template, request
from flask_caching import Cache from flask_caching import Cache
from download_digital import construct_dataframe, get_bez_data, get_landesbezirk, landesbezirk_dict from download_digital import construct_dataframe, get_bez_data, get_landesbezirk
config = { config = {
"CACHE_TYPE": "FileSystemCache", "CACHE_TYPE": "FileSystemCache",
@ -23,14 +23,6 @@ config = {
"CACHE_DIR": "cache", "CACHE_DIR": "cache",
} }
abbrev_dict = {
"BBR": "Berlin-Brandenburg",
"BaWü": "Baden-Württemberg",
"NRW": "Nordrhein-Westfalen",
"RLP": "Rheinland-Pfalz-Saarland",
"SAT": "Sachsen, Sachsen-Anhalt, Thüringen",
}
os.environ["TZ"] = "Europe/Berlin" os.environ["TZ"] = "Europe/Berlin"
time.tzset() time.tzset()
@ -104,7 +96,6 @@ def plot(
total_targets: tuple[int, ...] = (1500, 2500, 3500), total_targets: tuple[int, ...] = (1500, 2500, 3500),
alpha: float | None = None, alpha: float | None = None,
landesbez_str: str | None = None, landesbez_str: str | None = None,
fix_lims: bool = True,
) -> str: ) -> str:
fig = plt.figure(dpi=300) fig = plt.figure(dpi=300)
@ -134,7 +125,7 @@ def plot(
ls="--", ls="--",
marker="o", marker="o",
lw=1, lw=1,
color="#e4004e" if bez is None or not fix_lims else None, color="#e4004e" if bez is None else None,
markersize=4, markersize=4,
label=bez if bez is not None else "Bundesweit", label=bez if bez is not None else "Bundesweit",
) )
@ -161,7 +152,6 @@ def plot(
plt.title("Teilnahme an Digitaler Beschäftigtenbefragung") plt.title("Teilnahme an Digitaler Beschäftigtenbefragung")
plt.ylabel("# Teilnahmen") plt.ylabel("# Teilnahmen")
if fix_lims:
max_val = df.sum(axis=1).max().item() max_val = df.sum(axis=1).max().item()
nearest_target = np.array(total_targets, dtype=np.float32) - max_val nearest_target = np.array(total_targets, dtype=np.float32) - max_val
@ -194,7 +184,6 @@ def plot(
sec_ax.set_ylabel("# Teilnahmen [% Erfolg]") sec_ax.set_ylabel("# Teilnahmen [% Erfolg]")
sec_ax.yaxis.set_major_formatter(mtick.PercentFormatter()) sec_ax.yaxis.set_major_formatter(mtick.PercentFormatter())
if fix_lims:
for total_target in total_targets: for total_target in total_targets:
plt.axhline(y=total_target, color="#48a9be", linestyle="--") plt.axhline(y=total_target, color="#48a9be", linestyle="--")
@ -206,8 +195,6 @@ def plot(
def create_fig( def create_fig(
url: str = "https://beschaeftigtenbefragung.verdi.de/", url: str = "https://beschaeftigtenbefragung.verdi.de/",
importance_factor: float = 1.0, importance_factor: float = 1.0,
landesbez_strs: list[str | None] | None = None,
fix_lims: bool = True,
): ):
curr_datetime = datetime.datetime.now() curr_datetime = datetime.datetime.now()
try: try:
@ -243,7 +230,6 @@ def create_fig(
timestamp = Markup(f'<font color="red">{key} 10:00:00</font>') timestamp = Markup(f'<font color="red">{key} 10:00:00</font>')
total = plot_df.loc[curr_datetime].sum() total = plot_df.loc[curr_datetime].sum()
if landesbez_strs is None:
landesbez_strs = [None] + [ landesbez_strs = [None] + [
bez bez
for bez in plot_df.columns for bez in plot_df.columns
@ -255,7 +241,6 @@ def create_fig(
plot_df, plot_df,
annotate_current=annotate_current, annotate_current=annotate_current,
landesbez_str=landesbez_strs, landesbez_str=landesbez_strs,
fix_lims=fix_lims,
), ),
df, df,
df_state, df_state,
@ -272,9 +257,11 @@ def convert_fig_to_svg(fig: plt.Figure) -> str:
return imgdata.read() return imgdata.read()
def _print_as_html(df: pd.DataFrame, output_str: list[str], total: int | None = None, dropna: bool = True) -> list[str]: @app.route("/")
@cache.cached(query_string=True)
def tables():
def _print_as_html(df: pd.DataFrame, total: int | None = None) -> None:
df = df.astype({"Digitale Befragung": "Int32"}) df = df.astype({"Digitale Befragung": "Int32"})
if dropna:
df = df.dropna() df = df.dropna()
with pd.option_context("display.max_rows", None): with pd.option_context("display.max_rows", None):
table = df.to_html( table = df.to_html(
@ -317,65 +304,26 @@ def _print_as_html(df: pd.DataFrame, output_str: list[str], total: int | None =
output_str.append(table[: idx - 1]) output_str.append(table[: idx - 1])
output_str.append(tfoot) output_str.append(tfoot)
output_str.append(table[idx:]) output_str.append(table[idx:])
return output_str
@app.route("/<state>")
@cache.cached(query_string=True)
def state_dashboard(state: str):
if state in abbrev_dict:
state = abbrev_dict[state]
if state not in landesbezirk_dict.values():
abort(404)
importance_factor = request.args.get("importance") importance_factor = request.args.get("importance")
if not importance_factor: if not importance_factor:
importance_factor = 1.0 importance_factor = 1.0
else: else:
importance_factor = float(importance_factor) importance_factor = float(importance_factor)
fig, df, df_state, timestamp = create_fig(landesbez_strs=[state], fix_lims=False)
svg_string = convert_fig_to_svg(fig)
plt.close()
df["Bundesland"] = df.index.map(get_landesbezirk)
df = df.rename(columns={"Bundesland": "Landesbezirk"})
df_state = df_state.loc[df_state["Landesbezirk"] == state]
df = df.loc[df["Landesbezirk"] == state]
output_str = [] output_str = []
output_str = _print_as_html(df_state, output_str, dropna=False)
output_str = _print_as_html(df, output_str, total=df_state['Digitale Befragung'].sum(), dropna=False)
return render_template(
"base.html",
tables="\n".join(output_str),
timestamp=timestamp,
image=svg_string,
)
@app.route("/")
@cache.cached(query_string=True)
def dashboard():
importance_factor = request.args.get("importance")
if not importance_factor:
importance_factor = 1.0
else:
importance_factor = float(importance_factor)
fig, df, df_state, timestamp = create_fig(importance_factor=importance_factor) fig, df, df_state, timestamp = create_fig(importance_factor=importance_factor)
svg_string = convert_fig_to_svg(fig) svg_string = convert_fig_to_svg(fig)
plt.close() plt.close()
_print_as_html(df_state)
df["Bundesland"] = df.index.map(get_landesbezirk) df["Bundesland"] = df.index.map(get_landesbezirk)
df = df.rename(columns={"Bundesland": "Landesbezirk"}) df = df.rename(columns={"Bundesland": "Landesbezirk"})
output_str = [] _print_as_html(df, total=df_state['Digitale Befragung'].sum())
output_str = _print_as_html(df_state, output_str, dropna=False)
output_str = _print_as_html(df, output_str, total=df_state['Digitale Befragung'].sum())
return render_template( return render_template(
"base.html", "base.html",